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Energy storing tendons Positional Tendons
High strains & elastic recoil in use Low strains and less elastic
High incidence of tendinopathy Efficient strain transfer from muscle-bone
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» Fibre composite material
— Multiple hierarchical levels of collagen
— Proteoglycanous matrix binding
— Interspersed with cells (tenocytes)
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Custom designed rig for location on confocal microscope
Enables tensile / compressive loading of viable tissue
samples p— ‘,a

Use range of matrix & cell stains to visualise matrix
components during straining
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Significantly more fibre Significantly more fascicle rotation
sliding in positional tendons in energy storing tendons

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56
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Recovery
Fibre Sliding Fascicle Rotation
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Significantly better recovery from loading in energy
storing flexor fascicles

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56
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SDFT CDET
» Extension = sample rotation » Extension = fibre sliding
+ Good recovery & elasticity * Poor recovery & less elastic
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Fascicles in energy storing SDFTs have helical
component which enables efficient extension and recoil

Thorpe et al. (2013) Acta Biomaterialia 9:8; 7948-56
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Fascicle contribution to tendon mechanics?

o
% Queen Mary
University of London
150+
T
o 1
E ’/1l‘
0 e 1
@ 100 7| v--sDFT
= R4 1 - CDET
0 /7 | = SDFT fascicle
’ CDET fascicle
501 /7 . :
I’ !
/
p
0=

0 5 10 15 20 25
Strain (%)
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Building indications of fascicle ends

o
Interfascicular mechanics ¥ Queen Mary

10 mm

Thorpe CT et al. (2012) J Roy Soc Int 9:76; 3108-17
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More springy, elastic fascicles in energy storing tendons

Extend and recover using a helical mechanism

Slide relative to each other within the whole
loaded tendon to enable large strains
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Ageing & Energy Storing
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Tendon Mechanics W Quoen Mary
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Thorpe CT et al. (2014) J Roy Soc Int 11:92; 20131058
Thorpe CT et al. (2013) Eur Cell Mat 8:25; 48-60

Correlates with 301
reduced fatigue
resistance: 20- Young SDFT

Old SDFT

Tendinopathy W Queen Mary

* Why are some individuals prone to
tendinopathy in energy storing tendons?

« What happens under cyclic fatigue loading?

* Micromechanics
* Cell response
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SDFT Fascicles
Young (3-6yrs); Old (18-20yrs)

« Subject half to fatigue loading:

— Cyclic creep: 60% UTS; 1800 E>
cycles
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Thorpe et al. (2014) Acta Biomat 10:7; 3217-24
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SDFT (old)

Spring coil reduced and
recovery of samples limited

Fatigue Loa* Sample

Resists damage using spring

mechanism

Starts to reduce spring coiling =

No mechanism to resist loading
= resorts to fibre sliding

As the spring is lost, capacity for .
recoil and recovery is lost
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Tendinopathy W Queen Mery

* Why are some individuals prone to
tendinopathy in energy storing tendons?

« What happens under cyclic fatigue loading?

* Micromechanics

» Cell response

Tendon Micromechanics W Queen Mary

University of London

Fibril

Tropocollagen
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Characterising damage:
bovine positional fascicles
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Legerlotz et af (2013) Scand J Med Sci Sport. 23:1; 31-37.
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Increase in IL-6
and COX-2 with
loading

Response
greater in the
IFM

Cox-;

Thorpe et al. (2014)
Submitted to SIMSS
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Diffuse increased
" staining for MMP-13
with loading

Thorpe et al. (2014)
Submitted to SIMSS
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Static Loaded

Increased
MMP-1 with
loading

MMP-1 also in
statically loaded
samples: co-localised
to C1-2C

C1,2C

IFM localised
without load;
Throughout matrix
with load

C1,2C &
MMP-1

IFM shows more
turnover?

Thorpe et al. (2014)
Submitted to SIMSS
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Indications of continual IFM turnover: MMP-1 and C1-2C in healthy tissue

Overload

Increase inflammatory markers with overload; specifically in IFM

Increased collagen degradation activity with loading — throughout matrix
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IFM turnover important for health?
IFM cells initial responders to overload?
What is in the IFM — does it assist energy storing tendon function?

Laser capture microdissection to
isolate regions of FM & IFM

* Proteomics
* Histochemistry Developing Tendinopathy
* Cell Phenotype
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